/* Copyright (C) 1991, 1992, 1993 Aladdin Enterprises. All rights reserved. This file is part of Ghostscript. Ghostscript is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the Ghostscript General Public License for full details. Everyone is granted permission to copy, modify and redistribute Ghostscript, but only under the conditions described in the Ghostscript General Public License. A copy of this license is supposed to have been given to you along with Ghostscript so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ /* gdevcdj.c */ /* H-P colour printer drivers for Ghostscript */ #include "std.h" /* to stop stdlib.h redefining types */ #include /* for rand() */ #include "gdevprn.h" #include "gdevpcl.h" #include "gsprops.h" /*** *** Note: this driver was contributed by a user, George Cameron: *** please contact g.cameron@biomed.abdn.ac.uk if you have questions. ***/ /* * Note that there are six drivers contained in this code: * * 1 - cdj500: HP DeskJet 500C * 2 - cdj550: HP DeskJet 550C * 3 - pjxl300: HP PaintJet XL300 * 4 - pj: HP PaintJet * 5 - pjxl: HP PaintJet XL * 6 - declj250: DEC LJ250 * * All of these drivers have 8-bit (monochrome), 16-bit and 24-bit * (colour) and for the DJ 550C 32-bit, (colour, cmyk mode) * options in addition to the usual 1-bit and 3-bit modes * It is also possible to set various printer-specific parameters * from the gs command line, eg. * * gs -sDEVICE=cdj550 -dBitsPerPixel=16 -dDepletion=1 -dShingling=2 tiger.ps * * Please consult the appropriate section in the devices.doc file for * further details on all these drivers. */ #define DESKJET_PRINT_LIMIT 0.04 /* 'real' top margin? */ #define PAINTJET_PRINT_LIMIT 0.0 /* This is a guess.. */ /* Margins are left, bottom, right, top. */ #define DESKJET_MARGINS_LETTER 0.25, 0.50, 0.25, 0.167 #define DESKJET_MARGINS_A4 0.125, 0.50, 0.143, 0.167 #define PAINTJET_MARGINS_LETTER 0.167, 0.167, 0.167, 0.167 #define PAINTJET_MARGINS_A4 0.167, 0.167, 0.167, 0.167 #define PAINTJET_MARGINS_A3 0.167, 0.167, 0.167, 0.167 /* Default page size is US-Letter or A4 (other sizes from command line) */ #ifndef A4 # define WIDTH_10THS 85 # define HEIGHT_10THS 110 #else # define WIDTH_10THS 83 /* 210mm */ # define HEIGHT_10THS 117 /* 297mm */ #endif /* Define bits-per-pixel for generic drivers - default is 24-bit mode */ #ifndef BITSPERPIXEL # define BITSPERPIXEL 24 #endif #define W sizeof(word) #define I sizeof(int) /* Printer types */ #define DJ500C 0 #define DJ550C 1 #define PJXL300 2 #define PJ180 3 #define PJXL180 4 #define DECLJ250 5 /* No. of ink jets (used to minimise head movements) */ #define HEAD_ROWS_MONO 50 #define HEAD_ROWS_COLOUR 16 /* Colour mapping procedures */ private dev_proc_map_rgb_color (gdev_pcl_map_rgb_color); private dev_proc_map_color_rgb (gdev_pcl_map_color_rgb); /* Print-page, properties and miscellaneous procedures */ private dev_proc_open_device(dj500c_open); private dev_proc_open_device(dj550c_open); private dev_proc_open_device(pjxl300_open); private dev_proc_open_device(pjxl_open); private dev_proc_open_device(pj_open); private dev_proc_print_page(dj500c_print_page); private dev_proc_print_page(dj550c_print_page); private dev_proc_print_page(pjxl_print_page); private dev_proc_print_page(pj_print_page); private dev_proc_print_page(pjxl300_print_page); private dev_proc_print_page(declj250_print_page); private dev_proc_get_props(cdj_get_props); private dev_proc_get_props(pjxl_get_props); private dev_proc_get_props(pj_get_props); private dev_proc_put_props(cdj_put_props); private dev_proc_put_props(pjxl_put_props); private dev_proc_put_props(pj_put_props); /* The device descriptors */ typedef struct gx_device_cdj_s gx_device_cdj; struct gx_device_cdj_s { gx_device_common; gx_prn_device_common; int correction; /* Black correction parameter */ int shingling; /* Interlaced, multi-pass printing */ int depletion; /* 'Intelligent' dot-removal */ }; typedef struct gx_device_pjxl_s gx_device_pjxl; struct gx_device_pjxl_s { gx_device_common; gx_prn_device_common; uint correction; /* Black correction parameter */ int printqual; /* Mechanical print quality */ int rendertype; /* Driver or printer dithering control */ }; typedef struct gx_device_hp_s gx_device_hp; struct gx_device_hp_s { gx_device_common; gx_prn_device_common; uint correction; /* Black correction parameter * (used only by DJ500C) */ }; typedef struct gx_device_hp_s gx_device_pj; #define hp_device ((gx_device_hp *)pdev) #define cdj ((gx_device_cdj *)pdev) #define pjxl ((gx_device_pjxl *)pdev) #define pj ((gx_device_pj *)pdev) #define prn_hp_colour_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page)\ prn_device_body(gx_device_printer, procs, dev_name,\ WIDTH_10THS, HEIGHT_10THS, x_dpi, y_dpi, 0, 0, 0, 0, 0,\ bpp, 0, 0, 0, 0, print_page) #define cdj_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, correction, shingling, depletion)\ { prn_hp_colour_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page),\ correction,\ shingling,\ depletion\ } #define pjxl_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page, printqual, rendertype)\ { prn_hp_colour_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page), 0, \ printqual,\ rendertype\ } #define pj_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page)\ { prn_hp_colour_device(procs, dev_name, x_dpi, y_dpi, bpp, print_page), 0\ } #define hp_colour_procs(proc_colour_open, proc_get_props, proc_put_props) {\ proc_colour_open,\ gdev_pcl_get_initial_matrix,\ gx_default_sync_output,\ gdev_prn_output_page,\ gdev_prn_close,\ gdev_pcl_map_rgb_color,\ gdev_pcl_map_color_rgb,\ NULL, /* fill_rectangle */\ NULL, /* tile_rectangle */\ NULL, /* copy_mono */\ NULL, /* copy_color */\ NULL, /* draw_line */\ gx_default_get_bits,\ proc_get_props,\ proc_put_props\ } private gx_device_procs cdj500_procs = hp_colour_procs(dj500c_open, cdj_get_props, cdj_put_props); private gx_device_procs cdj550_procs = hp_colour_procs(dj550c_open, cdj_get_props, cdj_put_props); private gx_device_procs pjxl300_procs = hp_colour_procs(pjxl300_open, pjxl_get_props, pjxl_put_props); private gx_device_procs pjxl_procs = hp_colour_procs(pjxl_open, pjxl_get_props, pjxl_put_props); private gx_device_procs pj_procs = hp_colour_procs(pj_open, pj_get_props, pj_put_props); gx_device_cdj far_data gs_cdjmono_device = cdj_device(cdj500_procs, "cdjmono", 300, 300, 1, dj500c_print_page, 4, 0, 1); gx_device_cdj far_data gs_cdeskjet_device = cdj_device(cdj500_procs, "cdeskjet", 300, 300, 3, dj500c_print_page, 4, 2, 1); gx_device_cdj far_data gs_cdjcolor_device = cdj_device(cdj500_procs, "cdjcolor", 300, 300, 24, dj500c_print_page, 4, 2, 1); gx_device_cdj far_data gs_cdj500_device = cdj_device(cdj500_procs, "cdj500", 300, 300, BITSPERPIXEL, dj500c_print_page, 4, 2, 1); gx_device_cdj far_data gs_cdj550_device = cdj_device(cdj550_procs, "cdj550", 300, 300, BITSPERPIXEL, dj550c_print_page, 0, 2, 1); gx_device_pjxl far_data gs_pjxl300_device = pjxl_device(pjxl300_procs, "pjxl300", 300, 300, BITSPERPIXEL, pjxl300_print_page, 0, 0); gx_device_pjxl far_data gs_pjxl_device = pjxl_device(pjxl_procs, "pjxl", 180, 180, BITSPERPIXEL, pjxl_print_page, 0, 0); gx_device_pj far_data gs_pj_device = pj_device(pj_procs, "pj", 180, 180, BITSPERPIXEL, pj_print_page); gx_device_pj far_data gs_declj250_device = pj_device(pj_procs, "declj250", 180, 180, BITSPERPIXEL, declj250_print_page); /* Forward references */ private int gdev_pcl_mode1compress(P3(const byte *, const byte *, byte *)); private int gdev_pcl_mode9compress(P4(int, const byte *, const byte *, byte *)); private int hp_colour_open(P2(gx_device *, int)); private int hp_colour_print_page(P3(gx_device_printer *, FILE *, int)); private int put_prop_int(P5(gs_prop_item *, int *, int, int, int)); private uint gdev_prn_rasterwidth(P2(const gx_device_printer *, int)); private void set_bpp(P2(gx_device *, int)); private void expand_line(P4(word *, int, int, int)); /* Open the printer and set up the margins. */ private int dj500c_open(gx_device *pdev) { return hp_colour_open(pdev, DJ500C); } private int dj550c_open(gx_device *pdev) { return hp_colour_open(pdev, DJ550C); } private int pjxl300_open(gx_device *pdev) { return hp_colour_open(pdev, PJXL300); } private int pj_open(gx_device *pdev) { return hp_colour_open(pdev, PJ180); } private int pjxl_open(gx_device *pdev) { return hp_colour_open(pdev, PJXL180); } private int hp_colour_open(gx_device *pdev, int ptype) { /* Change the margins if necessary. */ static const float pj_a4[4] = { PAINTJET_MARGINS_A4 }; static const float pj_a3[4] = { PAINTJET_MARGINS_A3 }; static const float pj_letter[4] = { PAINTJET_MARGINS_LETTER }; static const float dj_a4[4] = { DESKJET_MARGINS_A4 }; static const float dj_letter[4] = { DESKJET_MARGINS_LETTER }; const float _ds *m; int psize; /* Set up colour params if put_props has not already done so */ if (pdev->color_info.num_components == 0) set_bpp(pdev, pdev->color_info.depth); switch (ptype) { case DJ500C: case DJ550C: m = (gdev_pcl_paper_size(pdev) == PAPER_SIZE_A4 ? dj_a4 : dj_letter); break; case PJ180: m = (gdev_pcl_paper_size(pdev) == PAPER_SIZE_A4 ? pj_a4 : pj_letter); break; case PJXL300: case PJXL180: m = ((psize = gdev_pcl_paper_size(pdev)) == PAPER_SIZE_A4 ? pj_a4 : (psize == PAPER_SIZE_A3) ? pj_a3 : pj_letter); break; } pdev->l_margin = m[0]; pdev->b_margin = m[1]; pdev->r_margin = m[2]; pdev->t_margin = m[3]; return gdev_prn_open(pdev); } /* Added properties for DeskJet 5xxC */ private const gs_prop_item props_cdj[] = { /* Read-write properties. */ prop_def("BlackCorrect", prt_int), prop_def("Shingling", prt_int), prop_def("Depletion", prt_int), prop_def("BitsPerPixel", prt_int), }; /* Get properties. In addition to the standard and printer * properties, we supply shingling and depletion parameters, * and control over the bits-per-pixel used in output rendering */ private int cdj_get_props(gx_device *pdev, gs_prop_item *plist) { int start = gdev_prn_get_props(pdev, plist); if ( plist != 0 ) { register gs_prop_item *pi = plist + start; memcpy(pi, props_cdj, sizeof(props_cdj)); pi[0].value.i = cdj->correction; pi[1].value.i = cdj->shingling; pi[2].value.i = cdj->depletion; pi[3].value.i = cdj->color_info.depth; } return start + sizeof(props_cdj) / sizeof(gs_prop_item); } /* Put properties. */ private int cdj_put_props(gx_device *pdev, gs_prop_item *plist, int count) { gs_prop_item *known[4]; int old_bpp = cdj->color_info.depth; int bpp = 0; int code = 0; props_extract(plist, count, props_cdj, 4, known, 0); code = gdev_prn_put_props(pdev, plist, count); if ( code < 0 ) return code; code = put_prop_int(known[0], &cdj->correction, 0, 9, code); code = put_prop_int(known[1], &cdj->shingling, 0, 2, code); code = put_prop_int(known[2], &cdj->depletion, 1, 3, code); code = put_prop_int(known[3], &bpp, 1, 32, code); if ( code < 0 ) return_error(code); if (bpp != 0) { set_bpp(pdev, bpp); /* Close the device; gs_putdeviceprops will reopen it. */ if ( bpp != old_bpp && pdev->is_open ) { int ccode = gs_closedevice(pdev); if ( ccode < 0 ) return ccode; } } return code; } /* Added properties for PaintJet XL and PaintJet XL300 */ private const gs_prop_item props_pjxl[] = { /* Read-write properties. */ prop_def("PrintQuality", prt_int), prop_def("RenderType", prt_int), prop_def("BitsPerPixel", prt_int), }; /* Get properties. In addition to the standard and printer * properties, we supply print_quality and render_type * parameters, together with bpp control. */ private int pjxl_get_props(gx_device *pdev, gs_prop_item *plist) { int start = gdev_prn_get_props(pdev, plist); if ( plist != 0 ) { register gs_prop_item *pi = plist + start; memcpy(pi, props_pjxl, sizeof(props_pjxl)); pi[0].value.i = pjxl->printqual; pi[1].value.i = pjxl->rendertype; pi[2].value.i = pjxl->color_info.depth; } return start + sizeof(props_pjxl) / sizeof(gs_prop_item); } /* Put properties. */ private int pjxl_put_props(gx_device *pdev, gs_prop_item *plist, int count) { gs_prop_item *known[3]; int old_bpp = pjxl->color_info.depth; int bpp = 0; int code = 0; props_extract(plist, count, props_pjxl, 3, known, 0); code = gdev_prn_put_props(pdev, plist, count); if ( code < 0 ) return code; code = put_prop_int(known[0], &pjxl->printqual, -1, 1, code); code = put_prop_int(known[1], &pjxl->rendertype, 0, 10, code); code = put_prop_int(known[2], &bpp, 1, 32, code); if ( code < 0 ) return_error(code); if (pjxl->rendertype > 0) { /* If printer is doing the dithering, we must have a * true-colour mode, ie. 16 or 24 bits per pixel */ if ((bpp == 0 && old_bpp < 16) || (bpp > 0 && bpp < 16)) bpp = 24; } if (bpp != 0) { set_bpp(pdev, bpp); /* Close the device; gs_putdeviceprops will reopen it. */ if ( bpp != old_bpp && pdev->is_open ) { int ccode = gs_closedevice(pdev); if ( ccode < 0 ) return ccode; } } return code; } /* Added properties for PaintJet */ private const gs_prop_item props_pj[] = { /* Read-write properties. */ prop_def("BitsPerPixel", prt_int), }; /* Get properties. In addition to the standard and printer */ /* properties, we allow control of the bits-per-pixel */ private int pj_get_props(gx_device *pdev, gs_prop_item *plist) { int start = gdev_prn_get_props(pdev, plist); if ( plist != 0 ) { register gs_prop_item *pi = plist + start; memcpy(pi, props_pj, sizeof(props_pj)); pi[0].value.i = pj->color_info.depth; } return start + sizeof(props_pj) / sizeof(gs_prop_item); } /* Put properties. */ private int pj_put_props(gx_device *pdev, gs_prop_item *plist, int count) { gs_prop_item *known[1]; int old_bpp = pj->color_info.depth; int bpp = 0; int code = 0; props_extract(plist, count, props_pj, 1, known, 0); code = gdev_prn_put_props(pdev, plist, count); if ( code < 0 ) return code; code = put_prop_int(known[0], &bpp, 1, 32, code); if ( code < 0 ) return_error(code); if (bpp != 0) { set_bpp(pdev, bpp); /* Close the device; gs_putdeviceprops will reopen it. */ if ( bpp != old_bpp && pdev->is_open ) { int ccode = gs_closedevice(pdev); if ( ccode < 0 ) return ccode; } } return code; } /* ------ Internal routines ------ */ /* The DeskJet500C can compress (mode 9) */ private int dj500c_print_page(gx_device_printer * pdev, FILE * prn_stream) { return hp_colour_print_page(pdev, prn_stream, DJ500C); } /* The DeskJet550C can compress (mode 9) */ private int dj550c_print_page(gx_device_printer * pdev, FILE * prn_stream) { return hp_colour_print_page(pdev, prn_stream, DJ550C); } /* The PJXL300 can compress (modes 2 & 3) */ private int pjxl300_print_page(gx_device_printer * pdev, FILE * prn_stream) { int ret_code; /* Ensure we're operating in PCL mode */ fputs("\033%-12345X@PJL enter language = PCL\n", prn_stream); ret_code = hp_colour_print_page(pdev, prn_stream, PJXL300); /* Reenter switch-configured language */ fputs("\033%-12345X", prn_stream); return ret_code; } /* The PaintJet XL can compress (modes 2 & 3) */ private int pjxl_print_page(gx_device_printer * pdev, FILE * prn_stream) { return hp_colour_print_page(pdev, prn_stream, PJXL180); } /* The PaintJet can compress (mode 1) */ private int pj_print_page(gx_device_printer * pdev, FILE * prn_stream) { return hp_colour_print_page(pdev, prn_stream, PJ180); } /* The LJ250 can compress (mode 1) */ private int declj250_print_page(gx_device_printer * pdev, FILE * prn_stream) { int ret_code; fputs("\033%8", prn_stream); /* Enter PCL emulation mode */ ret_code = hp_colour_print_page(pdev, prn_stream, DECLJ250); fputs("\033%@", prn_stream); /* Exit PCL emulation mode */ return ret_code; } /* MACROS FOR DITHERING (we use macros for compact source and faster code) */ /* Floyd-Steinberg dithering. Often results in a dramatic improvement in * subjective image quality, but can also produce dramatic increases in * amount of printer data generated and actual printing time!! Mode 9 2D * compression is still useful for fairly flat colour or blank areas but its * compression is much less effective in areas where the dithering has * effectively randomised the dot distribution. */ #define SHIFT (I * I) #define MINVALUE 0 #define MAXVALUE ((256 << SHIFT) - 1) #define THRESHOLD (128 << SHIFT) #define FSditherI(inP, out, errP, Err, Bit, Offset)\ oldErr = Err;\ Err = (*errP + ((Err * 7) >> 4) + (*inP++ << SHIFT));\ if (Err > MAXVALUE) Err = MAXVALUE;\ else if (Err < MINVALUE) Err = MINVALUE;\ if (Err > THRESHOLD) {\ out |= Bit;\ Err -= MAXVALUE;\ }\ errP[Offset] += ((Err * 3) >> 4);\ *errP++ = ((Err * 5 + oldErr) >> 4); #define FSditherD(inP, out, errP, Err, Bit, Offset)\ oldErr = Err;\ Err = (*--errP + ((Err * 7) >> 4) + (*--inP << SHIFT));\ if (Err > MAXVALUE) Err = MAXVALUE;\ else if (Err < MINVALUE) Err = MINVALUE;\ if (Err > THRESHOLD) {\ out |= Bit;\ Err -= MAXVALUE;\ }\ errP[Offset] += ((Err * 3) >> 4);\ *errP = ((Err * 5 + oldErr) >> 4); /* Here we rely on compiler optimisation to remove lines of the form * (if (1 >= 4) {...}, ie. the constant boolean expressions */ #define FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, n)\ {\ if (scan == 0) { /* going_up */\ for (i = 0; i < plane_size; i++) {\ byte c, y, m, k, bitmask;\ int oldErr;\ bitmask = 0x80;\ for (c = m = y = k = j = 0; j < 8; j++) {\ if (n >= 4)\ { FSditherI(dp, k, ep, kErr, bitmask, -n);\ }\ if (n >= 3)\ { FSditherI(dp, c, ep, cErr, bitmask, -n);\ FSditherI(dp, m, ep, mErr, bitmask, -n);\ }\ FSditherI(dp, y, ep, yErr, bitmask, -n);\ bitmask >>= 1;\ }\ if (n >= 4)\ *kP++ = k;\ if (n >= 3)\ { *cP++ = c;\ *mP++ = m;\ }\ *yP++ = y;\ }\ } else { /* going_down */\ for (i = 0; i < plane_size; i++) {\ byte c, y, m, k, bitmask;\ int oldErr;\ bitmask = 0x01;\ for (c = m = y = k = j = 0; j < 8; j++) {\ FSditherD(dp, y, ep, yErr, bitmask, n);\ if (n >= 3)\ { FSditherD(dp, m, ep, mErr, bitmask, n);\ FSditherD(dp, c, ep, cErr, bitmask, n);\ }\ if (n >= 4)\ { FSditherD(dp, k, ep, kErr, bitmask, n);\ }\ bitmask <<= 1;\ }\ *--yP = y;\ if (n >= 3)\ { *--mP = m;\ *--cP = c;\ }\ if (n >= 4)\ *--kP = k;\ }\ }\ } /* END MACROS FOR DITHERING */ /* Some convenient shorthand .. */ #define x_dpi (pdev->x_pixels_per_inch) #define y_dpi (pdev->y_pixels_per_inch) #define CONFIG_16BIT "\033*v6W\000\003\000\005\006\005" #define CONFIG_24BIT "\033*v6W\000\003\000\010\010\010" /* To calculate buffer size as next greater multiple of both parameter and W */ #define calc_buffsize(a, b) (((((a) + ((b) * W) - 1) / ((b) * W))) * W) /* Send the page to the printer. Compress each scan line. */ private int hp_colour_print_page(gx_device_printer * pdev, FILE * prn_stream, int ptype) { uint raster_width = gdev_prn_rasterwidth(pdev, 1); /* int line_size = gdev_prn_rasterwidth(pdev, 0); */ int line_size = gdev_prn_raster(pdev); int line_size_words = (line_size + W - 1) / W; int paper_size = gdev_pcl_paper_size((gx_device *)pdev); int num_comps = pdev->color_info.num_components; int bits_per_pixel = pdev->color_info.depth; int storage_bpp = bits_per_pixel; int expanded_bpp = bits_per_pixel; int plane_size, databuff_size; int combined_escapes = 1; int errbuff_size = 0; int outbuff_size = 0; int compression = 0; int scan = 0; int *errors[2]; char *cid_string; byte *data[4], *plane_data[4][4], *out_data; byte *out_row, *out_row_alt; word *storage; uint storage_size_words; /* Tricks and cheats ... */ switch (ptype) { case DJ550C: if (num_comps == 3) num_comps = 4; /* 4-component printing */ break; case PJXL300: case PJXL180: if (pjxl->rendertype > 0) { if (bits_per_pixel < 16) pjxl->rendertype = 0; else { /* Control codes for CID sequence */ cid_string = (bits_per_pixel == 16) ? CONFIG_16BIT : CONFIG_24BIT; /* Pretend we're a monobit device so we send the data out unchanged */ bits_per_pixel = storage_bpp = expanded_bpp = 1; num_comps = 1; } } break; } if (storage_bpp == 8 && num_comps >= 3) bits_per_pixel = expanded_bpp = 3; /* Only 3 bits of each byte used */ plane_size = calc_buffsize(line_size, storage_bpp); if (bits_per_pixel == 1) { /* Data printed direct from i/p */ databuff_size = 0; /* so no data buffer required, */ outbuff_size = plane_size * 4; /* but need separate output buffers */ } if (bits_per_pixel > 4) { /* Error buffer for FS dithering */ expanded_bpp = storage_bpp = /* 8, 24 or 32 bits */ num_comps * 8; errbuff_size = /* 4n extra values for line ends */ calc_buffsize((plane_size * expanded_bpp + num_comps * 4) * I, 1); } databuff_size = plane_size * storage_bpp; storage_size_words = ((plane_size + plane_size) * num_comps + databuff_size + errbuff_size + outbuff_size) / W; storage = (ulong *) gs_malloc(storage_size_words, W, "hp_colour_print_page"); /* * The principal data pointers are stored as pairs of values, with * the selection being made by the 'scan' variable. The function of the * scan variable is overloaded, as it controls both the alternating * raster scan direction used in the Floyd-Steinberg dithering and also * the buffer alternation required for line-difference compression. * * Thus, the number of pointers required is as follows: * * errors: 2 (scan direction only) * data: 4 (scan direction and alternating buffers) * plane_data: 4 (scan direction and alternating buffers) */ if (storage == 0) /* can't allocate working area */ return_error(gs_error_VMerror); else { int i; byte *p = out_data = out_row = (byte *)storage; data[0] = data[1] = data[2] = p; data[3] = p + databuff_size; out_row_alt = out_row + plane_size * 2; if (bits_per_pixel > 1) { p += databuff_size; } if (bits_per_pixel > 4) { errors[0] = (int *)p + num_comps * 2; errors[1] = errors[0] + databuff_size; p += errbuff_size; } for (i = 0; i < num_comps; i++) { plane_data[0][i] = plane_data[2][i] = p; p += plane_size; } for (i = 0; i < num_comps; i++) { plane_data[1][i] = p; plane_data[3][i] = p + plane_size; p += plane_size; } if (bits_per_pixel == 1) { out_data = out_row = p; /* size is outbuff_size * 4 */ out_row_alt = out_row + plane_size * 2; data[1] += databuff_size; /* coincides with plane_data pointers */ data[3] += databuff_size; } } /* Clear temp storage */ memset(storage, 0, storage_size_words * W); /* Initialize printer. */ fputs("\033E", prn_stream); /* Reset printer */ fputs("\033*rbC", prn_stream); /* End raster graphics */ fprintf(prn_stream, "\033*t%dR", (int)x_dpi); /* Set resolution */ #define DOFFSET (pdev->t_margin - DESKJET_PRINT_LIMIT) /* Print position */ #define POFFSET (pdev->t_margin - PAINTJET_PRINT_LIMIT) switch (ptype) { case DJ500C: case DJ550C: /* Page size, orientation, top margin & perforation skip */ fprintf(prn_stream, "\033&l%daolE", paper_size); /* Set depletion and shingling levels */ fprintf(prn_stream, "\033*o%dd%dQ", cdj->depletion, cdj->shingling); /* Move to top left of printed area */ fprintf(prn_stream, "\033*p%dY", (int)(300 * DOFFSET)); /* Set number of planes ((-)1 is mono, (-)3 is (cmy)rgb, -4 is cmyk), * and raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds-%du0A", raster_width, num_comps); /* Select data compression */ compression = 9; break; case PJXL300: /* Page size, orientation, top margin & perforation skip */ fprintf(prn_stream, "\033&l%daolE", paper_size); /* Set no-negative-motion mode, for faster (unbuffered) printing */ fprintf(prn_stream, "\033&a1N"); /* Set print quality */ fprintf(prn_stream, "\033*o%dQ", pjxl->printqual); /* Move to top left of printed area */ fprintf(prn_stream, "\033*p%dY", (int)(300 * POFFSET)); /* Configure colour setup */ if (pjxl->rendertype > 0) { /* Set render type */ fprintf(prn_stream, "\033*t%dJ", pjxl->rendertype); /* Configure image data */ fputs(cid_string, prn_stream); /* Set raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds1A", raster_width); } else { /* Set number of planes (1 is mono, 3 is rgb), * and raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds-%du0A", raster_width, num_comps); } /* No combined escapes for raster transfers */ combined_escapes = 0; break; case PJXL180: /* Page size, orientation, top margin & perforation skip */ fprintf(prn_stream, "\033&l%daolE", paper_size); /* Set print quality */ fprintf(prn_stream, "\033*o%dQ", pjxl->printqual); /* Move to top left of printed area */ fprintf(prn_stream, "\033*p%dY", (int)(180 * POFFSET)); /* Configure colour setup */ if (pjxl->rendertype > 0) { /* Set render type */ fprintf(prn_stream, "\033*t%dJ", pjxl->rendertype); /* Configure image data */ fputs(cid_string, prn_stream); /* Set raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds1A", raster_width); } else { /* Set number of planes (1 is mono, 3 is rgb), * and raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds%du0A", raster_width, num_comps); } break; case PJ180: case DECLJ250: /* Disable perforation skip */ fprintf(prn_stream, "\033&lL"); /* Move to top left of printed area */ fprintf(prn_stream, "\033&a%dV", (int)(720 * POFFSET)); /* Set number of planes (1 is mono, 3 is rgb), * and raster width, then start raster graphics */ fprintf(prn_stream, "\033*r%ds%du0A", raster_width, num_comps); if (ptype == DECLJ250) { /* No combined escapes for raster transfers */ combined_escapes = 0; /* From here on, we're a standard Paintjet .. */ ptype = PJ180; } /* Select data compression */ compression = 1; break; } /* The XL300 PCL interpreter seems to be based on a rather old definition * of the language - although it is newer than the deskjets, it includes * neither the 'mode 9' compression, nor (even more suprisingly) the ability * to use combined escape sequences for the raster transfer commands * (where they make by far the biggest impact). Technically, it is a * language extension, but the previous model (the 180dpi Paintjet XL) * has this facility, which means that the XL300 is non-backwards-compatible * in this respect. Even the original and venerable 180dpi Paintjet has the * 'extension'. I have made a guess that the DEC LJ250 does not support * it, but have not yet found somebody to test this for me. */ if (combined_escapes) { /* From now on, all escape commands start with \033*b, so we * combine them. */ fputs("\033*b", prn_stream); /* Set compression if the mode has been defined. */ if (compression) fprintf(prn_stream, "%dm", compression); } else if (compression) fprintf(prn_stream, "\033*b%dM", compression); /* Send each scan line in turn */ { int lend = pdev->height - (pdev->t_margin + pdev->b_margin) * y_dpi; int cErr, mErr, yErr, kErr; int this_pass, lnum, i; int num_blank_lines = 0; int start_rows = (num_comps == 1) ? HEAD_ROWS_MONO - 1 : HEAD_ROWS_COLOUR - 1; word rmask = ~(word) 0 << ((-pdev->width * storage_bpp) & (W * 8 - 1)); cErr = mErr = yErr = kErr = 0; if (bits_per_pixel > 4) { /* Randomly seed initial error buffer */ int *ep = errors[0]; for (i = 0; i < databuff_size; i++) { *ep++ = (rand() % (MAXVALUE / 2)) - MAXVALUE / 4; } } /* Inhibit blank line printing for RGB-only printers, * since in this case 'blank' means black! */ if (ptype == PJ180 || ptype == PJXL180) start_rows = -1; this_pass = start_rows; for (lnum = 0; lnum < lend; lnum++) { word *data_words = (word *)data[scan]; register word *end_data = data_words + line_size_words; gdev_prn_copy_scan_lines(pdev, lnum, data[scan], line_size); /* Mask off 1-bits beyond the line width. */ end_data[-1] &= rmask; /* Remove trailing 0s. */ while (end_data > data_words && end_data[-1] == 0) end_data--; if (end_data == data_words) { /* Blank line */ num_blank_lines++; continue; } /* Skip blank lines if any */ if (num_blank_lines > 0) { if (num_blank_lines < this_pass) { /* Moving down from current position * causes head motion on the DeskJets, so * if the number of lines is within the * current pass of the print head, we're * better off printing blanks. */ this_pass -= num_blank_lines; if (combined_escapes) { fputc('y', prn_stream); /* Clear current and seed rows */ for (; num_blank_lines; num_blank_lines--) fputc('w', prn_stream); } else { fputs("\033*bY", prn_stream); /* Clear current and seed rows */ for (; num_blank_lines; num_blank_lines--) fputs("\033*bW", prn_stream); } } else { if (combined_escapes) fprintf(prn_stream, "%dy", num_blank_lines); else fprintf(prn_stream, "\033*b%dY", num_blank_lines); } memset(plane_data[1 - scan][0], 0, plane_size * num_comps); num_blank_lines = 0; this_pass = start_rows; } { /* Printing non-blank lines */ register byte *kP = plane_data[scan + 2][3]; register byte *cP = plane_data[scan + 2][2]; register byte *mP = plane_data[scan + 2][1]; register byte *yP = plane_data[scan + 2][0]; register byte *dp = data[scan + 2]; register int *ep = errors[scan]; int zero_row_count; int i, j; byte *odp; if (this_pass) this_pass--; else this_pass = start_rows; if (expanded_bpp > bits_per_pixel) /* Expand line if required */ expand_line(data_words, line_size, bits_per_pixel, expanded_bpp); /* In colour modes, we have some bit-shuffling to do before * we can print the data; in FS mode we also have the * dithering to take care of. */ switch (expanded_bpp) { /* Can be 1, 3, 8, 24 or 32 */ case 3: /* Transpose the data to get pixel planes. */ for (i = 0, odp = plane_data[scan][0]; i < databuff_size; i += 8, odp++) { /* The following is for 16-bit * machines */ #define spread3(c)\ { 0, c, c*0x100, c*0x101, c*0x10000L, c*0x10001L, c*0x10100L, c*0x10101L } static ulong spr40[8] = spread3(0x40); static ulong spr08[8] = spread3(8); static ulong spr02[8] = spread3(2); register byte *dp = data[scan] + i; register ulong pword = (spr40[dp[0]] << 1) + (spr40[dp[1]]) + (spr40[dp[2]] >> 1) + (spr08[dp[3]] << 1) + (spr08[dp[4]]) + (spr08[dp[5]] >> 1) + (spr02[dp[6]]) + (spr02[dp[7]] >> 1); odp[0] = (byte) (pword >> 16); odp[plane_size] = (byte) (pword >> 8); odp[plane_size * 2] = (byte) (pword); } break; case 8: FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, 1); break; case 24: FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, 3); break; case 32: FSDline(scan, i, j, plane_size, cErr, mErr, yErr, kErr, cP, mP, yP, kP, 4); break; } /* switch(expanded_bpp) */ /* Make sure all black is in the k plane */ if (num_comps == 4 ) { register word *kp = (word *)plane_data[scan][3]; register word *cp = (word *)plane_data[scan][2]; register word *mp = (word *)plane_data[scan][1]; register word *yp = (word *)plane_data[scan][0]; if (bits_per_pixel > 4) { /* This has been done as 4 planes */ for (i = 0; i < plane_size / W; i++) { word bits = ~*kp++; *cp++ &= bits; *mp++ &= bits; *yp++ &= bits; } } else { /* This has really been done as 3 planes */ for (i = 0; i < plane_size / W; i++) { word bits = *cp & *mp & *yp; *kp++ = bits; bits = ~bits; *cp++ &= bits; *mp++ &= bits; *yp++ &= bits; } } } /* Transfer raster graphics * in the order (K), C, M, Y. */ for (zero_row_count = 0, i = num_comps - 1; i >= 0; i--) { int output_plane = 1; int out_count; switch (ptype) { case DJ500C: /* Always compress using mode 9 */ case DJ550C: out_count = gdev_pcl_mode9compress(plane_size, plane_data[scan][i], plane_data[1 - scan][i], out_data); /* This optimisation allows early termination of the * row, but this doesn't work correctly in an alternating * mode 2 / mode 3 regime, so we only use it with mode 9 * compression */ if (out_count == 0) { output_plane = 0; /* No further output for this plane */ if (i == 0) fputc('w', prn_stream); else zero_row_count++; } else { for (; zero_row_count; zero_row_count--) fputc('v', prn_stream); } break; case PJ180: /* NB: The mode 1 routine complements the data -> rgb */ out_count = gdev_pcl_mode1compress((const byte *) plane_data[scan][i], (const byte *) plane_data[scan][i] + plane_size - 1, out_data); break; case PJXL180: /* Need to invert data as CMY not supported */ if (num_comps > 1) { word *wp = (word *)plane_data[scan][i]; for (j = 0; j < plane_size / W; j++, wp++) *wp = ~*wp; } /* fall through .. */ case PJXL300: /* Compression modes 2 and 3 are both * available. Try both and see which one * produces the least output data. */ { const char *plane = (char *)plane_data[scan][i]; char *prev_plane = (char *)plane_data[1 - scan][i]; const word *row = (word *)plane; const word *end_row = row + plane_size/W; int count2 = gdev_pcl_mode2compress(row, end_row, out_row_alt); int count3 = gdev_pcl_mode3compress(plane_size, plane, prev_plane, out_row); int penalty = combined_escapes ? strlen("#m") : strlen("\033*b#M"); int penalty2 = (compression == 2 ? 0 : penalty); int penalty3 = (compression == 3 ? 0 : penalty); if (count3 + penalty3 < count2 + penalty2) { if ( compression != 3 ) { if (combined_escapes) fputs("3m", prn_stream); else fputs("\033*b3M", prn_stream); compression = 3; } out_data = out_row; out_count = count3; } else { if ( compression != 2 ) { if (combined_escapes) fputs("2m", prn_stream); else fputs("\033*b2M", prn_stream); compression = 2; } out_data = out_row_alt; out_count = count2; } } break; } if (output_plane) { if (combined_escapes) fprintf(prn_stream, "%d%c", out_count, "wvvv"[i]); else fprintf(prn_stream, "\033*b%d%c", out_count, "WVVV"[i]); fwrite(out_data, sizeof(byte), out_count, prn_stream); } } /* Transfer Raster Graphics ... */ scan = 1 - scan; /* toggle scan direction */ } /* Printing non-blank lines */ } /* for lnum ... */ } /* send each scan line in turn */ if (combined_escapes) fputs("0M", prn_stream); /* end raster graphics & reset printer */ fputs("\033*rbC\033E", prn_stream); /* eject page */ if (ptype == PJ180) fputc('\f', prn_stream); else fputs("\033&l0H", prn_stream); /* free temporary storage */ gs_free((char *) storage, storage_size_words, W, "hp_colour_print_page"); return 0; } /* * Mode 9 2D compression for the HP DeskJet 5xxC. This mode can give * very good compression ratios, especially if there are areas of flat * colour (or blank areas), and so is 'highly recommended' for colour * printing in particular because of the very large amounts of data which * can be generated */ private int gdev_pcl_mode9compress(int bytecount, const byte * current, const byte * previous, byte * compressed) { register const byte *cur = current; register const byte *prev = previous; register byte *out = compressed; const byte *end = current + bytecount; while (cur < end) { /* Detect a run of unchanged bytes. */ const byte *run = cur; register const byte *diff; int offset; while (cur < end && *cur == *prev) { cur++, prev++; } if (cur == end) break; /* rest of row is unchanged */ /* Detect a run of changed bytes. */ /* We know that *cur != *prev. */ diff = cur; do { prev++; cur++; } while (cur < end && *cur != *prev); /* Now [run..diff) are unchanged, and */ /* [diff..cur) are changed. */ offset = diff - run; { const byte *stop_test = cur - 4; int dissimilar, similar; while (diff < cur) { const byte *compr = diff; const byte *next; /* end of run */ byte value; while (diff <= stop_test && ((value = *diff) != diff[1] || value != diff[2] || value != diff[3])) diff++; /* Find out how long the run is */ if (diff > stop_test) /* no run */ next = diff = cur; else { next = diff + 4; while (next < cur && *next == value) next++; } #define MAXOFFSETU 15 #define MAXCOUNTU 7 /* output 'dissimilar' bytes, uncompressed */ if ((dissimilar = diff - compr)) { int temp, i; if ((temp = --dissimilar) > MAXCOUNTU) temp = MAXCOUNTU; if (offset < MAXOFFSETU) *out++ = (offset << 3) | (byte) temp; else { *out++ = (MAXOFFSETU << 3) | (byte) temp; offset -= MAXOFFSETU; while (offset >= 255) { *out++ = 255; offset -= 255; } *out++ = offset; } if (temp == MAXCOUNTU) { temp = dissimilar - MAXCOUNTU; while (temp >= 255) { *out++ = 255; temp -= 255; } *out++ = (byte) temp; } for (i = 0; i <= dissimilar; i++) *out++ = *compr++; offset = 0; } /* end uncompressed */ #define MAXOFFSETC 3 #define MAXCOUNTC 31 /* output 'similar' bytes, run-length encoded */ if ((similar = next - diff)) { int temp; if ((temp = (similar -= 2)) > MAXCOUNTC) temp = MAXCOUNTC; if (offset < MAXOFFSETC) *out++ = 0x80 | (offset << 5) | (byte) temp; else { *out++ = 0x80 | (MAXOFFSETC << 5) | (byte) temp; offset -= MAXOFFSETC; while (offset >= 255) { *out++ = 255; offset -= 255; } *out++ = offset; } if (temp == MAXCOUNTC) { temp = similar - MAXCOUNTC; while (temp >= 255) { *out++ = 255; temp -= 255; } *out++ = (byte) temp; } *out++ = value; offset = 0; } /* end compressed */ diff = next; } } } return out - compressed; } /* * Row compression for the H-P PaintJet. * Compresses data from row up to end_row, storing the result * starting at compressed. Returns the number of bytes stored. * The compressed format consists of a byte N followed by a * data byte that is to be repeated N+1 times. * In the worst case, the `compressed' representation is * twice as large as the input. * We complement the bytes at the same time, because * we accumulated the image in complemented form. */ private int gdev_pcl_mode1compress(const byte *row, const byte *end_row, byte *compressed) { register const byte *in = row; register byte *out = compressed; while ( in < end_row ) { byte test = *in++; const byte *run = in; while ( in < end_row && *in == test ) in++; /* Note that in - run + 1 is the repetition count. */ while ( in - run > 255 ) { *out++ = 255; *out++ = ~test; run += 256; } *out++ = in - run; *out++ = ~test; } return out - compressed; } /* * Map a r-g-b color to a color index. * We complement the colours, since we're using cmy anyway, and * because the buffering routines expect white to be zero. * Includes colour balancing, following HP recommendations, to try * and correct the greenish cast resulting from an equal mix of the * c, m, y, inks by reducing the cyan component to give a truer black. */ private gx_color_index gdev_pcl_map_rgb_color(gx_device *pdev, gx_color_value r, gx_color_value g, gx_color_value b) { if (gx_color_value_to_byte(r & g & b) == 0xff) return (gx_color_index)0; /* white */ else { int correction = hp_device->correction; gx_color_value c = gx_max_color_value - r; gx_color_value m = gx_max_color_value - g; gx_color_value y = gx_max_color_value - b; /* Colour correction for better blacks when using the colour ink * cartridge (on the DeskJet 500C only). We reduce the cyan component * by some fraction (eg. 4/5) to correct the slightly greenish cast * resulting from an equal mix of the three inks */ if (correction) { ulong maxval, minval, range; maxval = c >= m ? (c >= y ? c : y) : (m >= y ? m : y); if (maxval > 0) { minval = c <= m ? (c <= y ? c : y) : (m <= y? m : y); range = maxval - minval; #define shift (gx_color_value_bits - 12) c = ((c >> shift) * (range + (maxval * correction))) / ((maxval * (correction + 1)) >> shift); } } switch (pdev->color_info.depth) { case 1: return ((c | m | y) > gx_max_color_value / 2 ? (gx_color_index)1 : (gx_color_index)0); case 8: if (pdev->color_info.num_components >= 3) #define gx_color_value_to_1bit(cv) ((cv) >> (gx_color_value_bits - 1)) return (gx_color_value_to_1bit(c) + (gx_color_value_to_1bit(m) << 1) + (gx_color_value_to_1bit(y) << 2)); else #define red_weight 306 #define green_weight 601 #define blue_weight 117 return ((((ulong)c * red_weight + (ulong)m * green_weight + (ulong)y * blue_weight) >> (gx_color_value_bits + 2))); case 16: #define gx_color_value_to_5bits(cv) ((cv) >> (gx_color_value_bits - 5)) #define gx_color_value_to_6bits(cv) ((cv) >> (gx_color_value_bits - 6)) return (gx_color_value_to_5bits(y) + (gx_color_value_to_6bits(m) << 5) + (gx_color_value_to_5bits(c) << 11)); case 24: return (gx_color_value_to_byte(y) + (gx_color_value_to_byte(m) << 8) + ((ulong)gx_color_value_to_byte(c) << 16)); case 32: { gx_color_value k = c <= m ? (c <= y ? c : y) : (m <= y ? m : y); return (gx_color_value_to_byte(y - k) + (gx_color_value_to_byte(m - k) << 8) + ((ulong)gx_color_value_to_byte(c - k) << 16) + ((ulong)gx_color_value_to_byte(k) << 24)); } } } return (gx_color_index)0; /* This never happens */ } /* Map a color index to a r-g-b color. */ private int gdev_pcl_map_color_rgb(gx_device *pdev, gx_color_index color, gx_color_value prgb[3]) { /* For the moment, we simply ignore any black correction */ switch (pdev->color_info.depth) { case 1: prgb[0] = prgb[1] = prgb[2] = -((gx_color_value)color ^ 1); break; case 8: if (pdev->color_info.num_components >= 3) { gx_color_value c = (gx_color_value)color ^ 7; prgb[0] = -(c & 1); prgb[1] = -((c >> 1) & 1); prgb[2] = -(c >> 2); } else { gx_color_value value = (gx_color_value)color ^ 0xff; prgb[0] = prgb[1] = prgb[2] = (value << 8) + value; } break; case 16: { gx_color_value c = (gx_color_value)color ^ 0xffff; ushort value = c >> 11; prgb[0] = ((value << 11) + (value << 6) + (value << 1) + (value >> 4)) >> (16 - gx_color_value_bits); value = (c >> 6) & 0x3f; prgb[1] = ((value << 10) + (value << 4) + (value >> 2)) >> (16 - gx_color_value_bits); value = c & 0x1f; prgb[2] = ((value << 11) + (value << 6) + (value << 1) + (value >> 4)) >> (16 - gx_color_value_bits); } break; case 24: { gx_color_value c = (gx_color_value)color ^ 0xffffff; prgb[0] = gx_color_value_from_byte(c >> 16); prgb[1] = gx_color_value_from_byte((c >> 8) & 0xff); prgb[2] = gx_color_value_from_byte(c & 0xff); } break; case 32: #define gx_maxcol gx_color_value_from_byte(gx_color_value_to_byte(gx_max_color_value)) { gx_color_value w = gx_maxcol - gx_color_value_from_byte(color >> 24); prgb[0] = w - gx_color_value_from_byte((color >> 16) & 0xff); prgb[1] = w - gx_color_value_from_byte((color >> 8) & 0xff); prgb[2] = w - gx_color_value_from_byte(color & 0xff); } break; } return 0; } /* * Convert and expand scanlines: * * (a) 16 -> 24 bit (1-stage) * (b) 16 -> 32 bit (2-stage) * or (c) 24 -> 32 bit (1-stage) */ private void expand_line(word *line, int linesize, int bpp, int ebpp) { int endline = linesize; byte *start = (byte *)line; register byte *in, *out; if (bpp == 16) /* 16 to 24 (cmy) if required */ { register byte b0, b1; endline = ((endline + 1) / 2); in = start + endline * 2; out = start + (endline *= 3); while (in > start) { b0 = *--in; b1 = *--in; *--out = (b0 << 3) + ((b0 >> 2) & 0x7); *--out = (b1 << 5) + ((b0 >> 3) & 0x1c) + ((b1 >> 1) & 0x3); *--out = (b1 & 0xf8) + (b1 >> 5); } } if (ebpp == 32) /* 24 (cmy) to 32 (cmyk) if required */ { register byte c, m, y, k; endline = ((endline + 2) / 3); in = start + endline * 3; out = start + endline * 4; while (in > start) { y = *--in; m = *--in; c = *--in; k = c < m ? (c < y ? c : y) : (m < y ? m : y); *--out = y - k; *--out = m - k; *--out = c - k; *--out = k; } } } private int put_prop_int(gs_prop_item *pi, int *property, int minval, int maxval, int code) { if ( pi == 0 ) return (code); if ( pi->value.i < minval || pi->value.i > maxval ) { pi->status = pv_rangecheck; return (gs_error_rangecheck); } else { *property = pi->value.i; return (code ? code : 1); } } private void set_bpp(gx_device *pdev, int bits_per_pixel) { gx_device_color_info *ci = &pdev->color_info; /* Only valid bits-per-pixel are 1, 3, 8, 16, 24, 32 */ int bpp = bits_per_pixel < 3 ? 1 : bits_per_pixel < 8 ? 3 : (bits_per_pixel >> 3) << 3; ci->num_components = ((bpp == 1) || (bpp == 8) ? 1 : 3); ci->depth = ((bpp > 1) && (bpp < 8) ? 8 : bpp); ci->max_gray = (bpp >= 8 ? 255 : 1); ci->max_rgb = (bpp >= 8 ? 255 : bpp > 1 ? 1 : 0); ci->dither_gray = (bpp >= 8 ? 5 : 2); ci->dither_rgb = (bpp >= 8 ? 5 : bpp > 1 ? 2 : 0); } /* This returns either the number of pixels in a scan line, or the number * of bytes required to store the line, both clipped to the page margins */ private uint gdev_prn_rasterwidth(const gx_device_printer *pdev, int pixelcount) { ulong raster_width = pdev->width - pdev->x_pixels_per_inch * (pdev->l_margin + pdev->r_margin); return (pixelcount ? (uint)raster_width : (uint)((raster_width * pdev->color_info.depth + 7) >> 3)); }