/* Copyright (C) 1989, 1990, 1991 Aladdin Enterprises. All rights reserved. This file is part of Ghostscript. Ghostscript is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the Ghostscript General Public License for full details. Everyone is granted permission to copy, modify and redistribute Ghostscript, but only under the conditions described in the Ghostscript General Public License. A copy of this license is supposed to have been given to you along with Ghostscript so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ /* gdevpe.c Private Eye display driver for Ghostscript Hacked by Fran Taylor, Reflection Technology Inc. */ #include "memory_.h" #include "gx.h" #include "gxdevice.h" char *getenv(char *name); typedef struct gx_device_pe_s { gx_device_common; byte *fbaddr; unsigned regs; } gx_device_pe; #define pedev ((gx_device_pe *)dev) typedef struct { ushort reg, val; } regval; #define XSIZE 720 #define YSIZE 280 #define BPL 90 #define XPPI 160.0 #define YPPI 96.0 #define DEFAULT_ADDRESS ((byte *) 0xb8000000) #define DEFAULT_REGISTERS 0x3d0 dev_proc_open_device(pe_open); dev_proc_close_device(pe_close); dev_proc_fill_rectangle(pe_fill_rectangle); dev_proc_copy_mono(pe_copy_mono); private gx_device_procs pe_procs = { pe_open, gx_default_get_initial_matrix, gx_default_sync_output, gx_default_output_page, pe_close, gx_default_map_rgb_color, gx_default_map_color_rgb, pe_fill_rectangle, gx_default_tile_rectangle, pe_copy_mono, gx_default_copy_color, gx_default_draw_line, gx_default_get_bits, gx_default_get_props, gx_default_put_props }; gx_device_pe gs_pe_device = { sizeof(gx_device_pe), &pe_procs, "Private Eye", XSIZE, YSIZE, XPPI, YPPI, no_margins, dci_black_and_white, 0, DEFAULT_ADDRESS, DEFAULT_REGISTERS }; static regval peinit[] = {{0x04, 0x1e}, {0x05, 0x00}, {0x04, 0x0c}, {0x05, 0x21}, {0x04, 0x0d}, {0x05, 0x98}, {0x08, 0x00}, {0x08, 0x1e}, {0x04, 0x1e}, {0x05, 0x01}}; static regval pedone[] = {{0x04, 0x1e}, {0x05, 0x10}, {0x04, 0x0a}, {0x05, 0x00}, {0x04, 0x0b}, {0x05, 0x07}, {0x04, 0x0c}, {0x05, 0x00}, {0x04, 0x0d}, {0x05, 0x00}, {0x04, 0x0e}, {0x05, 0x00}, {0x04, 0x0f}, {0x05, 0x00}, {0x08, 0x00}, {0x08, 0x29}}; int pe_open(gx_device *dev) { char *str; int i; if ((str = getenv("PEFBADDR")) != 0) { if (!sscanf(str, "%lx", &(pedev->fbaddr))) { eprintf("Private Eye: PEFBADDR environment string format error\n"); exit(1); } } if ((str = getenv("PEREGS")) != 0) { if (!sscanf(str, "%x", &(pedev->regs))) { eprintf("Private Eye: PEREGS environment string format error\n"); exit(1); } } for (i = 0; i < 10; i++) outportb(pedev->regs + peinit[i].reg, peinit[i].val); return 0; } int pe_close(gx_device *dev) { int i; /* restore the screen */ for (i = 0; i < 16; i++) outportb(pedev->regs + pedone[i].reg, pedone[i].val); /* clear the frame buffer */ memset(pedev->fbaddr, 0, 4000); return 0; } int pe_fill_rectangle(gx_device *dev, int x1, int y1, int w, int h, gx_color_index color) { int x2, y2, xlen; byte led, red, d; byte *ptr; /* cull */ if ((w <= 0) || (h <= 0) || (x1 > XSIZE) || (y1 > YSIZE)) return 0; x2 = x1 + w - 1; y2 = y1 + h - 1; /* cull some more */ if ((x2 < 0) || (y2 < 0)) return 0; /* clip */ if (x1 < 0) x1 = 0; if (x2 > XSIZE-1) x2 = XSIZE-1; if (y1 < 0) y1 = 0; if (y2 > YSIZE-1) y2 = YSIZE-1; w = x2 - x1 + 1; h = y2 - y1 + 1; xlen = (x2 >> 3) - (x1 >> 3) - 1; led = 0xff >> (x1 & 7); red = 0xff << (7 - (x2 & 7)); ptr = pedev->fbaddr + (y1 * BPL) + (x1 >> 3); if (color) { /* here to set pixels */ if (xlen == -1) { /* special for rectangles that fit in a byte */ d = led & red; for(; h >= 0; h--, ptr += BPL) *ptr |= d; return 0; } /* normal fill */ for(; h >= 0; h--, ptr += BPL) { register int x = xlen; register byte *p = ptr; *p++ |= led; while ( x-- ) *p++ = 0xff; *p |= red; } } /* here to clear pixels */ led = ~led; red = ~red; if (xlen == -1) { /* special for rectangles that fit in a byte */ d = led | red; for(; h >= 0; h--, ptr += BPL) *ptr &= d; return 0; } /* normal fill */ for(; h >= 0; h--, ptr += BPL) { register int x = xlen; register byte *p = ptr; *p++ &= led; while ( x-- ) *p++ = 0x00; *p &= red; } return 0; } int pe_copy_mono(gx_device *dev, const byte *base, int sourcex, int raster, gx_bitmap_id id, int x, int y, int w, int h, gx_color_index zero, gx_color_index one) { const byte *line; int sleft, dleft; int mask, rmask; int invert, zmask, omask; byte *dest; int offset; #define izero (int)zero #define ione (int)one if ( ione == izero ) /* vacuous case */ return pe_fill_rectangle(dev, x, y, w, h, zero); /* clip */ if ((x > XSIZE) || (y > YSIZE) || ((x + w) < 0) || ((y + h) < 0)) return 0; offset = x >> 3; dest = pedev->fbaddr + (y * BPL) + offset; line = base + (sourcex >> 3); sleft = 8 - (sourcex & 7); dleft = 8 - (x & 7); mask = 0xff >> (8 - dleft); if ( w < dleft ) mask -= mask >> w; else rmask = 0xff00 >> ((w - dleft) & 7); /* Macros for writing partial bytes. */ /* bits has already been inverted by xor'ing with invert. */ #define write_byte_masked(ptr, bits, mask)\ *ptr = ((bits | ~mask | zmask) & *ptr | (bits & mask & omask)) #define write_byte(ptr, bits)\ *ptr = ((bits | zmask) & *ptr | (bits & omask)) /* if ( dev->invert ) { if ( izero != (int)gx_no_color_index ) zero ^= 1; if ( ione != (int)gx_no_color_index ) one ^= 1; } */ invert = (izero == 1 || ione == 0 ? -1 : 0); zmask = (izero == 0 || ione == 0 ? 0 : -1); omask = (izero == 1 || ione == 1 ? -1 : 0); #undef izero #undef ione if (sleft == dleft) /* optimize the aligned case */ { w -= dleft; while ( --h >= 0 ) { register const byte *bptr = line; int count = w; register byte *optr = dest; register int bits = *bptr ^ invert; /* first partial byte */ write_byte_masked(optr, bits, mask); /* Do full bytes. */ while ((count -= 8) >= 0) { bits = *++bptr ^ invert; ++optr; write_byte(optr, bits); } /* Do last byte */ if (count > -8) { bits = *++bptr ^ invert; ++optr; write_byte_masked(optr, bits, rmask); } dest += BPL; line += raster; } } else { int skew = (sleft - dleft) & 7; int cskew = 8 - skew; while (--h >= 0) { const byte *bptr = line; int count = w; byte *optr = dest; register int bits; /* Do the first partial byte */ if (sleft >= dleft) { bits = *bptr >> skew; } else /* ( sleft < dleft ) */ { bits = *bptr++ << cskew; if (count > sleft) bits += *bptr >> skew; } bits ^= invert; write_byte_masked(optr, bits, mask); count -= dleft; optr++; /* Do full bytes. */ while ( count >= 8 ) { bits = *bptr++ << cskew; bits += *bptr >> skew; bits ^= invert; write_byte(optr, bits); count -= 8; optr++; } /* Do last byte */ if (count > 0) { bits = *bptr++ << cskew; if (count > skew) bits += *bptr >> skew; bits ^= invert; write_byte_masked(optr, bits, rmask); } dest += BPL; line += raster; } } return 0; }