
5-47

Using the AT89C2051 Microcontroller
as a Virtual Machine

It is often cited that what differentiates an
embedded microcontroller from other
general purpose computing devices is its
integration into a larger electrical or elec-
tro-mechanical system. While this is
generally true, the fact remains that pro-
cessors of widely differing capability and
architecture are employed in this regard.

Unfortunately, this broad explanation
defines nothing; we are still left to con-
tend with everything from full-blown
embedded PCs to the smallest self-con-
tained single-chip microcontrollers.
Within this expansive realm, conven-
tional wisdom may lead to the conclu-
sion that the smallest microcontrollers
are only appropriate for driving small-
scale applications with very limited pro-
cessing requirements. While this is
unquest ionab ly the case in many
instances, a class of applications exists
that mandates a relatively high level of
program complexity within severely con-
strained space limitations. Faced with
such a seeming paradox, engineers
often feel they have no choice but to
adopt a less than optimal design strat-
egy using a larger microcontroller than
originally intended.

The problem, of course, is one of limited
resources. Functional complexity implies
a non-trivial program, and the greater
the functional complexity the larger the
program. Even as the capability of small
single-chip microcontrollers continu-
ously inches upwards, appl icat ion
requirements seem to grow at a com-
mensurate rate. Trying to hit such a
moving target is difficult at best.

The economy of using a microcontroller
with just enough processing power for a
given application is a potent incentive to
find just the right fit. Of course, this only

works when the system requirements
are thoroughly understood and clearly
defined. Since such a design normally
has little reserve capacity, it is usually
hard pressed to handle features beyond
those originally specified. Should addi-
tional capabilities eventually become a
necessity, the result could be a system
that runs out of steam and an engineer
that runs out of options. Such are the
perils of designing on the edge.

Atmel’s AT89C2051 offers capabilities
that far exceed those of competing
devices of similar size. This opens up
potential design opportunities that were
simply unattainable with previously avail-
able parts. Housed in a 20-pin package,
Atmel’s miniature microcontroller retains
all the major features of the 8051 archi-
tecture. Furthermore, the AT89C2051
includes all of the 8051’s “special” pins
including the external interrupts, UART
transmit and receive lines, and the exter-
nal timer controls. Even though the
AT89C2051 significantly ups the pro-
cessing ante, it would seem that there
are limits to what you can accomplish
with any single-chip microcontroller.

This dilemma is nothing new. The tradi-
tional way of dealing with such limita-
tions has been to operate the microcon-
troller in external memory mode. Com-
mon sense would indicate the hopeless-
ness of applying such an approach to
the AT89C2051 . A f te r a l l , the
AT89C2051 is truly a single-chip design
that does not even possess an external
bus structure. It turns out that the situa-
tion is not hopeless at all.

w

AT89C2051
Flash
Microcontroller

Application
Note

Microcontroller5-48

Processor Simulation
The concept of microprocessor simulation is widely used
and well understood. Simulation is often used for develop-
ment

purposes where a PC program models a specific proces-
sor’s architecture and interprets and executes its binary
instruction set. Using this technique enables one to
develop, test, and debug algorithms that will ultimately be
combined into a larger program. Such a program will even-
tually run on a standalone microprocessor or microcontrol-
ler. Using simulation early in the design cycle is attractive
because it allows you to start developing code long before
the actual target hardware is available.

Processor simulation has also been applied to simulate
entire computing systems. In this context, existing applica-
tion programs, in their native binary format, have been
coerced to run on various computers powered by com-
pletely different processors. For obvious reasons, the per-
formance resulting from such an approach often proves to
be disappointing. This does not necessarily have to be the
case if the implementation is designed for a specific pur-
pose. Factors effecting performance efficiency include the
host processor’s strengths and limitations, the specific
types of operations that are to be simulated, and, to an
extent, the language the original program is written in.

Virtual Processor Simulation
Many developmental simulators have been produced that
emulate the functions of popular processors and microcon-
trollers using standard desktop computers. The same prin-
ciples can be utilized at the other end of the spectrum;
there are cases where running a simulation on a small
microcontroller can be put to an advantage. In this case,
however, the benefit is not derived from simulating a known
processor, but one that offers inherent advantages tailored
to solving the specific problem at hand. The implication, of
course, points to the design of a virtual processor. The idea
is based on the premise of using a real processor to imple-
ment a virtual device specifically designed to suit the spe-
cial needs of a particular application. In other words,
designing the tool set for a particular job.

The fact is that adopting such a methodology can ultimately
result in an architecture that can be pressed to serve as an
efficient vehicle for a number of specialized tasks. Details
including the fundamental architecture, instruction set, and
memory model can be approached with total freedom. But,
can such an approach provide the level of performance
demanded by embedded applications?

Efficiency and Overhead
To illustrate that efficiency is a subjective matter, consider
what happens when a typical C program is compiled to run
on an 8051 processor. It’s inconceivable that, on such an
architecture, any C statement will effectively compile down
to any corresponding 8051 instruction. A single C state-
ment invariably results in the execution of multiple instruc-
tion steps. It follows that, given an efficient simulated
instruction set, the simulation overhead might account for a
very small percentage of the overall execution time.

The key behind making this premise work is to devise an
instruction set and processor architecture that’s conducive
to performing the types of operations that a C compiler nat-
urally generates. In such an implementation, the contrived
instruction set essentially amounts to an intermediate lan-
guage. The op codes merely serve as a vehicle for suc-
cinctly conveying the compiler’s directives to the target pro-
cessor for execution.

The target processor, while performing the functions of a
simulator, interprets the intermediate instructions to per-
form the functions specified in the original high level lan-
guage source statements. The resulting efficiency can be
quite tolerable since the bulk of the instructions would exe-
cute regardless of whether they were emitted directly by
the compiler or invoked by the simulation kernel.

It turns out the performance penalty of such an approach
is, to a great extent, dependent on the way the program
memory itself is implemented. Since the AT89C2051 has
no external bus structure it makes sense to use a serial bus
to access the program memory. Using I2C for this purpose
provides the required flexibility along with reasonable
throughput.

Selecting I2C as a memory bus presents the potential of
choosing from a wide variety of EEPROM memory devices.
The most favorable configuration is Atmel’s AT24C64 that
offers 8K bytes of storage in an 8-pin package. Utilizing
extended 16-bit addressing, the AT24C64 provides linear
access to the entire internal memory array. And although a
lot of functionality can be crammed into a single chip, addi-
tional devices can easily be added in 8K increments to han-
dle very complex applications. Up to eight AT24C64s can
simultaneously reside on the I2C bus providing a full 64K of
storage while using just two wires.

Of course, serial memory access does come at a cost. In
this case the expense comes in the form of access time. To
an extent, this is moderated by the fact that the AT24C64
can operate at a 400 kHz clock rate (standard I2C is speci-
fied at a maximum of 100 kHz). Remember however, that
I2C can exact a significant performance penalty because a
substantial percentage of its bandwidth can be consumed
for control functions.

Microcontroller

5-49

The greatest overhead burden that I2C imposes involves
the transfer of addressing information. For every random
read or write, a 16-bit address must be transmitted along
with the extra overhead necessary to coordinate bus con-
trol for both the addressing phase and the data manipula-
tion phase. Under such conditions, actual data movement
could be swamped by the requisite overhead resulting in
unacceptable performance degradation. Fortunately, I2C
provides a means of eliminating much of this wasteful activ-
ity.

The AT24C64, like all other I2C memory devices, contains
an internal auto-increment address generator. Using this
feature, once addressability is established, data can be
continually streamed in a sequential fashion. As each byte
is read and acknowledged the internal address generator
increments in preparation for the next byte transfer. The
AT24C64 sets the maximum speed limit at 400 kHz but I2C
does not impose a lower limit. Effectively, the minimum fre-
quency can drop all the way to DC. As a result, it’s accept-
able to suspend a sequential transfer for as long as neces-
sary.

Utilizing these features, communications can be sped up
considerably. The ramifications are particularly significant
when the memory is used to store an executable program.
For example, once an address is written into the AT24C64,
data can be fetched in a continual stream until the program
branches or, if multiple AT24C64’s are used, until it
becomes necessary to cross into the next chip. At these
points it’s necessary to explicitly reload the internal address
generator. Normally, however, the majority of the accesses
will be sequential, resulting in greatly reduced overhead.

Processor Simulators and Language
Interpreters
It’s important to note the distinction between language spe-
cific interpreters that implement a defined language such
as BASIC, and a processor simulator that interprets a low
level binary instruction set. A tokenized BASIC interpreter,
while quite efficient in executing the commands that are
explicitly implemented as part of the language, is strictly
confined to what the language supports. The inherent effi-
ciency of an interpreted language comes at the expense of
flexibility.

In contrast, a processor simulator, that deals with a true
binary instruction set, enjoys total freedom in combining
these basic op codes into larger functional entities in
almost limitless permutations. Just like a real processor, a
simulated processor can utilize its instruction set for stan-
dard and custom C library functions, floating point libraries,
device drivers, etc.

The Virtual Machine — An Imaginary
Processor
The processor to be described is imaginary in the sense
that its architecture and instruction set are original and
unique. Realize, however, that this is not just a toy or an
intellectual diversion—from an implementation standpoint it
is quite real. The fundamental concept has been success-
fully ported to a variety of processor architectures. A ver-
sion exists that runs on a personal computer that is suitable
for demonstration and development purposes. The most
promising small-system port has been to the AT89C2051
due to the microcontroller’s standard processing core and
integrated peripheral set. The basic 8K Virtual Machine is
schematically depicted in Figure 1. The circuit’s simplicity
reveals that this is primarily a software implementation—
the definitive soft machine.

This imaginary processor, the product of Dunfield Develop-
ment Systems, has served in various applications providing
reliable solutions to real world problems where a standard
configuration was not necessary, optimal, or practical. That
this Virtual Machine also goes by the name “C-FLEA”
affirms its optimization for efficiently rendering the output of
a C language code generator.

The prime currency of a processor is time. Viewed in this
context, the expense of complexity can prove unacceptably
burdensome. Taking this into consideration, the Virtual
Machine, based on a simple 16-bit architecture that incor-
porates only four registers, is the epitome of simplicity. This
register set comprises an accumulator, index register,
stack pointer, and program counter. Appendix A provides
detailed information about the Virtual Machine architecture
and instruction set. Refer to Table 1 for a description of the
fundamental resource set.

Although the Virtual Machine performs all operations to 16-
bit precision, the needs of many embedded systems
resolve to 8 bits. To facilitate working with this common
denominator, the Virtual Machine stores data in little endian
format (low byte first) which facilitates the use of a given
variable’s base address to refer to either an 8-bit or 16-bit
quantity. Interestingly, the architecture provides no user
accessible flags. When invoking a compare instruction,
internal flags persist only long enough to accommodate the
ensuing branch instruction or the intervening compare
modifiers (which are described later).

This spartan register set is made workable by the inclusion
of a variety of addressing modes that excel at the types of
stack manipulations that are central to the canonical C
implementation. The Virtual Machine’s memory access
instructions, detailed in Table 2, include the following
addressing modes: immediate (8 or 16 bit), direct, indirect
through index register (with or without offset), indirect
through stack with offset, top of stack, and indirect through
top of stack (remove or leave value on stack).

Microcontroller5-50

The bulk of the virtual instruction set is presented in Table
3. These instructions include memory access instructions,
arithmetic instruction, and logical instructions. In keeping
with the previously established proposition, most can return
either bytes or words.

Since the compare instructions are designed to only deter-
mine equality, the instruction set is augmented by a set of
special compare modifiers. Using these, nuances of rela-
tive (signed and unsigned) magnitude can be coerced from
the basic compare instructions. These modifiers are
described in Table 4.

Program branching is supported using the relatively con-
ventional set of conditional and unconditional jump instruc-
tions shown in Table 5. Versions are provided for both near
and far destination targets to enhance code efficiency.
Note the inclusion of the SWITCH instruction which proves
especially useful since the “normal” compare instructions
destroy the contents of the accumulator when returning the
result of the compare operation.

Table 6 presents the stack manipulation set. Included are
common functions such as CALL, RETurn, and PUSH.
Conspicuously absent is an explicit POP instruction. The
corresponding functionality is provided by the various
addressing modes that, by default, manipulate the top of
the stack. For instance, POP A is synonymous with LD S+.
Additional instructions are included to facilitate stack frame
creation and destruction that is a necessary function of the
C language implementation.

Finally, the virtual instruction set is rounded with a number
of miscellaneous instructions shown in Table 7. For the
most part, these perform standard functions that should be
self explanatory. The input/output instructions are special in
that they offer an implementation specific avenue for estab-
lishing certain peripheral functions as instructions. Remem-
ber that, even though, the virtual instruction set offers the
programmer total freedom to construct any kind of compu-
tational sequence, all I/O operations are dependent on the
support coded into the Virtual Machine kernel. Essentially,
the simulation kernel is the software embodiment of a
microprocessor architecture. Naturally, the goal is to pro-
vide a general purpose engine capable of serving in a wide
variety of real embedded systems.

A significant number of op codes remain unassigned and
are available for future use.

Initial Program Loader
While not actually part of the Virtual Machine, the simula-
tion kernel contains a built-in program loader utility. This
operates serially and is invoked following a system reset by
a sequence of special commands from a utility program
running on the host computer. In addition to transferring the
load image to the Virtual Processor, the PC program pro-
vides a number of features which include a simulator (that
can hook into the target’s logical and physical I/O sub-
system) and a console window for performing user I/O to
the target system. Since the Virtual Machine’s code gener-
ator emits a standard Intel HEX file format, the use of the
PC utility program is optional.

In principle, there is no reason why an AT24C64 cannot be
programmed externally using a standard device program-
mer just as you would program an EPROM for a use in a
typical embedded computer. Although workable, this
approach would, at the least, prove cumbersome through-
out the development cycle. The difficulty of this approach
would be exacerbated in a system using multiple memory
chips. Obviously, it would be completely unworkable in the
event a Virtual Machine computer was rendered as a sur-
face mount assembly.

Microcontroller

5-51

Figure 1. 8K Virtual Machine

10 Fµ

+5

10K
1N914

RST

AT89C2051

XTAL2
4

1

5

2

3

6

XTAL1

RXD/P3.0

TXD/P3.1

7

8

9

11

10

INT0/P3.2

INT1/P3.3

T0/P3.4

T1/P3.5

P3.7

GND

AIN0/P1.0
12

18

17

16

15

13

14

19

AIN1/P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

V

+5

20

.1 Fµ
14.7456 MHz

22 pF

22 pF

1
A0

AT24C64

A1

A2

VSS

2

3

4
SDA

SCL

NC

VDD

8

7

6

5

+5

.1 Fµ
4.7K 4.7K

+5

CC

Microcontroller5-52

Virtual Machine I/O
The Virtual Machine handles physical I/O (as well as virtual
I/O) through the use of input/output instructions. It is natural
to reserve certain I/O addresses for on-chip functions such
as serial I/O and for access to the AT89C2051’s on-chip
parallel I/O ports. Additional I/O addresses are assigned to
second level functions such as serial port configuration and
direct I/O bit set and clear functions. The bit manipulation
functions are important when an on-chip parallel port is
simultaneously used for both input and output.

Consider the ramifications of performing a standard
read/modify/write operation on such a port. Normally this
would be accomplished by reading the port via an IN
instruction, performing a logical operation on the value, and
writing the modified data back to the port using OUT.
Should an input pin be externally pulling low while the port
was being read, the unfortunate outcome of this exercise
would be to render that line permanently jammed low and
unusable for any further input!

Additional virtual input/output devices are provided for func-
tions such as time-of-day clock, general system timing,
pulse width modulation, and pulse accumulation. These are
implemented as background interrupt service routines and
are accessed as simple input/output devices.

Serviceable as the basic I/O resource set may be, it’s often
necessary to provide ancillary I/O functions external to the
processor. The Virtual Machine accomplishes this transpar-
ently by passing any undefined I/O addresses to the exter-
nal peripheral trap. This handler uses a secondary I2C bus
to implement an auxiliary external peripheral/memory chan-
nel.

Here, the instruction’s I/O address is taken as the I2C slave
address. For output operations data is passed via the low
byte of the virtual accumulator. Input functions return data
in the low byte of the virtual accumulator. In both cases the
accumulator’s high byte is utilized to convey completion
status and can be interrogated to determine the outcome of
the requested operation. The result code reflects the status
of the data link transfer and either indicates valid comple-
tion or fault status. Should a fault be reported it could be
the result of a peripheral in busy status, a device that is not
present, or a legitimate peripheral malfunction.

Virtual Machine Assembly
To clarify the relationship between the Virtual Machine ker-
nel, a virtual assembly language library function, and a vir-
tual C application program, an example is in order. This will

also serve to illustrate how easily communication to the
outside world can be orchestrated in such an environment.

The program depicted in Listing 1 is a library function that
supports console I/O using a special I2C user I/O module.
(This is the same module that was detailed in the applica-

tion note “A Framework for Peripheral Expansion.”) The
user I/O module contains a standard 20 x 4 LCD, 4 x 4 key-
pad, and beeper. These are supported using two I2C-to-
parallel port expanders. The underlying premise is that,
once the data transport mechanism is hidden, the I2C ports
can be used just like any conventional I/O ports. In this
case the concealment is complete since the I2C driver is
written in the AT89C2051’s native instruction set and is
therefore completely invisible and inaccessible to a virtual
program running on the Virtual Machine. Reading and writ-
ing to I2C devices now becomes strictly a matter of IN and
OUT.

Looking again to listing 1 reveals how virtual instructions
can be combined to generate a useful program. Far from
being constrictive, the virtual instruction set yields an econ-
omy of expression while retaining a great deal of flexibility.
The limited number of registers does, however, require a
reliance on the stack for parameter passing and for holding
intermediate results. This shouldn’t be surprising consider-
ing the fact that the Virtual Machine is primarily designed as
a C engine. Anyone familiar with the way a C compiler uti-
lizes the stack frame should have little trouble adapting
these concepts to writing efficient assembler programs.

Virtual Machine Compilation
Not much can be said about the compilation process for the
Virtual Machine. This is truly a virtue since, after all, the pri-
mary purpose of a language compiler is to insulate the pro-
grammer from the complexities of a particular processor.
To those experienced with C compilers for 8051 proces-
sors, the most notable omission here is the absence of the
multiplicity of libraries for the various memory models that
are so necessary when working with a native 8051. Recall
that the Virtual Machine supports a single, eminently rea-
sonable, flat 64K memory space.

Listing 2 reveals that there is nothing special and, more
importantly, that there are no artificial limitations inherent in
a C program written for the Virtual Machine. This program
implements a simple calculator function that uses the I2C
user I/O module as the system console device and utilizes
the long math functions from the Virtual Machine math
library. The actual functionality behind this module is sec-
ondary. What is more important is that it looks like a C pro-
gram and behaves like a C program — and can be abused
like a C program. In short, it can be coerced to do the
things you need a typical embedded program to do.

Microcontroller

5-53

Pint Sized Computer
Although tiny by any scale of measure, the Virtual machine
behaves the way you would expect any self respecting pro-
cessor to behave, virtual or not. More to the point, the Vir-
tual Machine in actuality is a fully functional computer sys-
tem. You would be hard pressed to find a smaller, fully
functional, computer with comparable capability that ade-
quately supports the C programming language.

Using surface mount manufacturing techniques, a fully
operational computer can be constructed to fit into an area
the size of a postage stamp. The Virtual Machine’s large
program memory space, combined with its secondary I2C
memory/peripheral bus, makes the architecture suitable for
handling a number of relatively ambitious embedded
projects. Its minuscule size allows it to be placed any-
where.

Sources
If you are interested in experimenting with the Virtual
Machine concept, a fully operational PC based Virtual
Machine simulator, C compiler with libraries, and assem-
bler are available for downloading from the the Dunfield
Development Systems bulletin board at (613) 256-6289.
For availability of the Virtual Machine processor, develop-
ment system, and support software contact Mid-Tech Com-
puting Devices USA; P.O. Box 218; Stafford, CT 06075
(860) 684-2442.

To obtain the listing 1 and listing 2 codes, please download
from Atmel’s Web Site or BBS.

Microcontroller5-54

Appendix A — Virtual Machine Architecture
Table 1. Fundamental Resource Set

Table 2. General Addressing Modes

Notes: 1. Addressing mode is in lower 3 bits of op code.

2. Mode S+ always pops 16 bits from stack. Only 16-bit values can be pushed.

3. Modes [S+] and [S] will always use a 16-bit address on the top pf the stack but the final target can be 8 or 16 bits.

ACC 16-bit accumulator 8-bit accesses are auto zero-filled

INDEX 16-bit addressing register, cannot be manipulated as 8 bits

SP 16-bit stack pointer

PC 16-bit program counter

Syntax Coding Description

#n x0 ii(ii) Immediate (8 or 16-bit operand)

aaaa x1 dd dd Direct memory address

I x2 Indirect (through INDEX register) no offset

n,I x3 oo Indirect (through INDEX register) with 8-bit offset

n,S x4 oo Indirect (through SP) with 8-bit offset

S+ x5 On Top of Stack (remove)

[S+] x6 Indirect through TOS (remove)

[S] x7 Indirect through TOS (leave on stack)

Microcontroller

5-55

Table 3. Memory Addressing Instructions

Notes: 1. ACC always contains 16 valid bits. All operations are performed in 16-bit precision. 8-bit operands are zero-filled when they
are fetched.

2. SI decrements when data is pushed

3. Data is stored in little endian format.

4. There are no user accessible flags. In the case of CMP, internal flags are maintaned only long enough to accommoate the
LT-UGE instruction.

Name Description (Unused Address Modes)

LD Load ACC 16 bits

LDB Load ACC 8 bits

ADD Add 16 bits

ADDB Add 8 bits

SUB Subtract 16 bits

SUBB Subtract 8 bits

MUL Multiply by 16 bits

MULB Multiply by 8 bits

DIV Divide by 16 bits

DIVB Divide by 8 bits

AND And 16 bits

ANDB And 8 bits

OR OR 16 bits

ORB OR 8 bits

XOR XOR 16 bits

XORB XOR 8 bits

CMP Compare 16 bits (ACC = 1 if equal)

CMPB Compare 8 bits

LDI Load INDEX (16 bits only)

LEAI Load INDEX with address (00, 05)

ST Store ACC 16 bits (00, 05)

STB Store ACC 8 bits (00, 05)

STI Store INDEX (16 bits only) (00, 05)

SHR Shift right (8-bit count only)

SHL Shift left (8-bit count only)

Microcontroller5-56

Table 4. Compare Modifiers

Notes: 1. These instructions must immediately follow a CMP instruction.

2. NOT instruction is used to implement explicit NE.

Table 5. Jump Instructions

Note: 1. Switch table format: addr1, value1, addr2, value2, ... 0, default addr

Table 6. Stack Manipulation Instructions

Note: 1. Explicit POP instruction are not required since various addressing modes use and remove the top item on stack.

Name Description

LT ACC = 1 if less than (signed)

LE ACC = 1 if less than or equal (signed)

GT ACC = 1 if greater than (signed)

GE ACC = 1 if greater than of equal (signed)

ULT ACC = 1 if lower than (unsigned)

ULE ACC = 1 if lower than or same (unsigned)

UGT ACC = 1 if higher than (unsigned)

UGE ACC = 1 if higher than or same (unsigned)

Name Description

JMP Long jump (16-bit absolute)

JZ Long jump if ACC=0 (16-bit absolute)

JNZ Long jump if ACC!=0 (16-bit absolute)

SJMP Short jump (8-bit PC offset)

SJZ Short jump if ACC=0 (8-bit PC offset)

SJNZ Short jump if ACC!=0 (8-bit PC offset)

IJMP Indirect jump (Address in ACC)

SWITCH Jump through switch table (ACC=value, INDEX=table)

Name Description

CALL Call subroutine (16-bit absolute address)

RET Return from subroutine

ALLOC Allocate space on stack (8-bit value)

FREE Release space on stack (8-bit value)

PUSHA Push ACC on stack

PUSHI Push INDEX on stack

TAS Copy ACC to SP

TSA Copy SP to ACC

Microcontroller

5-57

Table 7. Miscellaneous Instructions

Note: 1. ALT obtains the remainder after DIV and obtains the high word after a multiply. This instruction must be executed immedi-
ately after the MUL or DIV.

Name Description

CLR Zero ACC

COM Complement ACC (ACC = ACC XOR FFFF)

NEG Negate ACC (ACC = 0 - ACC)

NOT ACC = 1 if ACC was 0, else ACC = 0

INC Increment ACC

DEC Decrement ACC

TAI Copy ACC to INDEX

TIA Copy INDEX to ACC

ADAI Add ACC to INDEX

ALT Get alternate result from MUL/DIV

OUT Output byte in ACC to PORT

IN Read byte from PORT

SYS System interface function

