

XC16x Emulation Concept OCDS Level 1 (On Chip Debug Support)

OCDS Level1: On-Chip-Debug-Support

- Low cost concept
- Available on all production chip
- Controlled via a JTAG link (8 wires)

AI MC MA TM Juli, 02 Page 1

XC166 architecture

XC16x Emulation Concept OCDS Level 1 (On Chip Debug Support)

Features

- Run control
- Program breakpoint / trigger also in internal FLASH
- Read/Write on the fly
- Flash Programming via JTAG

- access to:
 - on chip memories
 - CPU core state
 - SFRs
 - Peripherals
 - memories/devices at the external bus interface

XC166 architecture

XC16x Emulation Concept OCE (On Chip Emulation)

- OCE: On-Chip-Emulation
 - Enhanced concept
 - Available in a dedicated package
- aditional Features
 - Run control
 - complex Program / Data breakpoints

XC166 architecture

- Program trace

XC16x Emulation Concept OCE (On Chip Emulation)

- New Emulation Technologies (NET)
 - production chip is connected to a NET carrier chip
 - emulation resources distributed on both chips:
 - Production Chip:
 - OCDS and Cerberus for standard debugging
 - JTAG
 - program Flash memory
 - communication to carrier chip via PEIM (Production chip Emulation Interface Module)

NET Carrier Chip:

- OCE for high-end debugging
- JTAG and emulator interface
- Overlay RAM to emulate the FLASH memory (128 kBytes)
- communication to production chip via CEIM (Carrier chip Emulation Interface Module)
- monitor RAM (128 kBytes) for monitor code (can be locked)
- trace port for internal signals

```
XC166 architecture
```


XC16x Emulation Concept OCE (On Chip Emulation) - Block Diagram

AI MC MA TM Juli, 02 Page 5

XC166 architecture

XC16x Emulation Concept Emulation Device Manufacturing

XC166 architecture

XC16x Emulation Concept Emulation Device

XC161/XC164 Production chip flipped on the NET carrier chip for real time emulation support.

Advantage:

The emulation behaviour is equivalent to production chip. This simplifies your debug effort

XC166 architecture

XC16x Emulation Concept Emulation Memory

- Overlay Memory (128 kBytes on the carrier chip)
 - used to emulate the Flash memory
 - identical timing behavior compared to Flash access
 - can be loaded with code by emulator interface
 - SW can select whether the program is executed from the Flash or from the overlay memory (same address range)
- Monitor Memory (128 kBytes on the carrier chip)
 - used to store monitor or emulation routines or emulation data
 - can be protected (against user code access)
 - indication if the CPU accesses this memory area
 - Status of Device
 - SW can check if an emulation device is connected

XC16x Emulation Concept Emulation Concept

- XC166 Architecture Debugging Strategy
 - a breakpoint or another selected event occurs while the application SW is running
 - the instruction pipeline is stalled for application code fetch (break = no new instruction is executed)
 - instructions can be injected into the CPU, controlled by the debugger
 - the injected instruction can be a jump to a monitor routine in the monitor memory, that is then executed
 - after the monitor routine, the application code fetch can be enabled again
 - single step debugging also supported

XC166 architecture

XC16x Emulation Concept Memory Overlay

- Program Memories (access via IMB, also for data):
 - Program Flash with parallel overlay SRAM for emulation
 - Program RAM (PSRAM)
 - Monitor SRAM for emulation

